Those of you who have read some of my past blogs have probably gathered by now that I’m fascinated by the intersection of building automation, energy and the coming Internet of Things (IoT) revolution. What captivates me most about this collision of previously tangentially related and/or non-existent industries? The monumental shift of perception I believe we are witnessing of the relationship between buildings and energy.
Historically, buildings have been viewed simply as high intensity energy users and rightfully so. Today, commercial buildings alone account for upwards of 40% of all electricity usage in the US at a cost of roughly $160 billion annually. Building automation arose decades ago to serve the need of not only assuring environmental comfort and safety but also helping lower a building’s energy load and the corresponding energy expenses borne by owners/occupants. There has been amazing progress in building automation and energy efficiency (e.g., better materials, mechanical and electrical systems controls advancements) and grid technology (e.g., smart meters, interval pricing, demand response capabilities) since those first days, but buildings are still simplistically viewed as merely a consumer of energy. Increasingly, however, owners are beginning to rethink their building’s relationship with energy and envision value they can derive from these capital-intensive, physical footprints far beyond a place to simply conduct business that only consumes (no matter how efficiently) energy. People are starting to talk about buildings both as tangible, competitive advantages and sources of new revenue streams and energy is the common denominator.
I read an article today that does an excellent job of highlighting this shift in mindset. The article’s author, Erich Gunther of IEEE (Institute of Electrical and Electronic Engineers), uses the term Smart Buildings 1.0 for the first integration interval of building automation and grid technology where the initial focus has fittingly been on increasing the bottom line via energy efficiency, demand response opportunities and automation technology advancements. The next phase, which he logically calls Smart Buildings 2.0, is, “less about efficiencies and more about corporate energy destinies”. This iteration implies greater control over where, how and when energy is both generated and consumed by a building. Some call this next step in energy control the ability to “island” or go “net-zero”.
So when and why might this ability to control ones “energy destiny” be important? That’s a bit of a rhetorical question, as most folks understand that a business’ productivity level is still very much tied to its access to reliable energy. During major power outage events resulting from natural disaster or grid failure, which have doubled (it’s important to note) over the period 2001-2008 according to Energy Information Administration (IEA), a business’ operations can grind to a halt without a holistic energy strategy/contingency plan while its competitor, located on the other side of the country (or world for that matter) and unaffected by the event, quickly picks up where they left off taking the customer relationship with them. Control of ones “energy destiny” quickly begins to look like a vital piece of a proactive, forward thinking organization’s Business Continuity Plan.
Under Smart Buildings 2.0, business continuity, viewed through the lens of energy independence, will focus more on renewable, onsite sources of energy generation that allow a building or campus to continue business-as-usual during momentary grid outages and keep mission critical, customer facing functions up and running even in the event an outage that lasts for weeks. Although Gunther only touches on this lightly, I believe the building automation system will be the key enabler of an organization’s ability to ramp up or down power generation and/or consumption and dictate the hierarchy of where onsite generated energy is delivered. I believe that orchestrating both supply (i.e., power generation) and load (i.e., power consumption) side actions will be a critical function of tomorrow’s intelligent building automation/management systems. As buildings become more “energy autonomous” in the future, building automation systems will evolve dramatically to empower this complex level of inter-dependency with the grid and some level of self-sufficiency.
What role(s) do you see building automation systems playing in enabling an organization to own its energy destiny? I’d love to hear your thoughts on this or other energy related news affecting our industry.